澳门新葡8455.com必要时也可由实验得出

当前位置:澳门新葡8455.com > 澳门新葡8455.com > 澳门新葡8455.com必要时也可由实验得出
作者: 澳门新葡8455.com|来源: https://www.runchbase.com|栏目:澳门新葡8455.com

文章关键词:澳门新葡8455.com,数字滤波

  常用的 8 种数字滤波算法 摘 要:分析了采用数字滤波消除随机干扰的优点,详细论述了微机控制系统中 常用的 8 种数字滤波算法,并讨论了各种数字滤波算法的适用范围。 关键词:数字滤波;控制系统;随机干扰;数字滤波算法 1 引言 在微机控制系统的模拟输入信号中,一般均含有各种噪声和干扰,他们来 自被测信号源本身、传感器、外界干扰等。为了进行准确测量和控制,必须消除 被测信号中的噪声和干扰。噪声有 2 大类:一类为周期性的,其典型代表为 50 Hz 的工频干扰,对于这类信号,采用积分时间等于 20 ms 整倍数的双积分 A/D 转 换器,可有效地消除其影响;另一类为非周期的不规则随机信号,对于随机干扰, 可以用数字滤波方法予以削弱或滤除。所谓数字滤波,就是通过一定的计算或判 断程序减少干扰信号在有用信号中的比重,因此他实际上是一个程序滤波。 数字滤波器克服了模拟滤波器的许多不足,他与模拟滤波器相比有以下优 点: (1)数字滤波器是用软件实现的,不需要增加硬设备,澳门新葡8455.com因而可靠性高、稳 定性好,不存在阻抗匹配问题。 (2)模拟滤波器通常是各通道专用,而数字滤波器则可多通道共享,从而 降低了成本。 (3)数字滤波器可以对频率很低(如 0.01 Hz)的信号进行滤波,而模拟滤波 器由于受电容容量的限制,频率不可能太低。 (4)数字滤波器可以根据信号的不同,采用不同的滤波方法或滤波参数,具有灵 活、方便、功能强的特点。 2 常用数字滤波算法 数字滤波器是将一组输入数字序列进行一定的运算而转换成另一组输出 数字序列的装置。设数字滤波器的输入为 X(n),输出为 Y(n),则输入序列和输 出序列之间的关系可用差分方程式表示为: 其中:输入信号 X(n)可以是模拟信号经采样和 A/D 变换后得到的数字序列,也 可以是计算机的输出信号。具有上述关系的数字滤波器的当前输出与现在的和过 去的输入、过去的输出有关。由这样的差分方程式组成的滤波器称为递归型数字 滤波器。如果将上述差分方程式中 bK 取 0,则可得: 说明输出只和现在的输入和过去的输入有关。这种类型的滤波器称为非递 归型数字滤波器。 参数 aK、bK 的选择不同,可以实现低通、高通、带通、带阻等不同的数 字滤波器。 2.1 算术平均值滤波 算术平均值滤波是要寻找一个 Y,使该值与各采样值 X(K)(K=1~N)之间 误差的平方和为最小,即: 这时,可满足式(3)。式(4)便是算术平均值滤波的算法。 设第二次测量的测量值包含信号成分 Si 和噪声成分 Ci,则进行 N 次测量 的信号成分之和为: 噪声的强度是用均方根来衡量的,当噪声为随机信号时,进行 N 次测量的噪声 强度之和为: 式(5)和式(6)中,S、C 分别表示进行 N 次测量后信号和噪声的平均幅度。 这样对 N 次测量进行算术平均后的信噪比为: 其中,S/C 是求算术平均值前的信噪比。因此采用算术平均值后,使信噪比提 高了 倍。 算术平均值法适用于对一般具有随机干扰的信号进行滤波,这种信号的特 点是有一个平均值,信号在某一数值范围附近作上下波动,此时仅取一个采样值 作依据显然是不准确的,如压力、流量、液平面等信号的测量。但对脉冲性干扰 的平滑作用尚不理想,因此他不适用于脉冲性干扰比较严重的场合。由式(7)可 知,算术平均值法对信号的平滑滤波程度完全取决于 N。当 N 较大时,平滑度 高,但灵敏度低,即外界信号的变化对测量计算结果 Y 的影响小;当 N 较小时, 平滑度低,但灵敏度高。应视具体情况选取 N,以便既少占用计算时间,又达到 最好的效果,如对一般流量测量,可取 N=8~16,对压力等测量,可取 N=4。 2.2 加权平均值滤波 算术平均值法对每次采样值给出相同的加权系数,即 1/N。但有些场合 为了改进滤波效果,提高系统对当前所受干扰的灵敏度,需要增加新采样值在平 均值中的比重,即将各采样值取不同的比例,然后再相加,此方法称为加权平均 值法。一个 N 项加权平均式为: 常数 C1,C2,…,CN 的选取是多种多样的,其中常用的是加权系数法,即: 加权平均值法适用于系统纯滞后时间常数 τ 较大、采样周期较短的过程,他 给不同的相对采样时间得到的采样值以不同的权系数,以便能迅速反应系统当前 所受干扰的严重程度。但采用加权平均值法需要测试不同过程的纯滞后时间 τ , 同时要不断计算各权系数,增加了计算量,降低了控制速度,因而他的实际应用 不如算术平均值法广泛。 2.3 滑动平均值滤波 以上平均滤波算法有一个共同点,即每计算 1 次有效采样值必须连续采样 N 次。对于采样速度较慢或要求数据计算速率较高的实时系统,这些方法是无法 使用的。例如 A/D 数据,数据采样速率为每秒 10 次,而要求每秒输入 4 次数 据时,则 N 不能大于 2。滑动平均值法只采样 1 次,将本次采样值和以前的 N -1 次采样值一起求平均,得到当前的有效采样值。 滑动平均值法把 N 个采样数据看成一个队列,对列的长度固定为 N,每 进行一次新的采样,把采样结果放入队尾,而扔掉原来队首的一个数据,这样在 队列中始终有 N 个“最新”的数据。计算滤波值时,只要把队列中的 N 个数据 进行平均,就可得到新的滤波值。 滑动平均值法对周期性干扰有良好的抑制作用,平滑度高,灵敏度低;但 对偶然出现的脉冲性干扰的抑制作用差,不易消除由于脉冲干扰引起的采样值的 偏差。因此他不适用于脉冲干扰比较严重的场合,而适用于高频振荡系统。通过 观察不同 N 值下滑动平均的输出响应来选取 N 值,以便既少占用时间,又能达 到最好的滤波效果。其工程经验值为:流量 N 取 12,压力 N 取 4,液面 N 取 4~ 12,温度 N 取 1~4。 2.4 中值滤波 中值滤波是对某一被测参数连续采样 N 次(一般 N 取奇数),然后把 N 次 采样值从小到大,或从大到小排队,再取其中间值作为本次采样值。 中值滤波对于去掉偶然因素引起的波动或采样器不稳定而造成的误差所引起 的脉冲干扰比较有效,对温度、液位等变化缓慢的被测参数采用此法能收到良好 的滤波效果,但对流量、速度等快速变化的参数一般不易采用。 2.5 防脉冲干扰平均值滤波 在脉冲干扰比较严重的场合,若采用一般的平均值法,则干扰将“平均” 到计算结果中去,故平均值法不易消除由于脉冲干扰而引起的采样值偏差。防脉 冲干扰平均值法先对 N 个数据进行比较,去掉其中的最大值和最小值,然后计 算余下的 N-2 个数据的算术平均值。即: 在实际应用中,N 可取任何值,但为了加快测量计算速度,N 一般不能太大, 常取为 4,即为四取二再取平均值法。他具有计算方便、速度快、存储量小等特 点,故得到了广泛应用。 2.6 程序判断滤波 工程实践表明,许多物理量的变化都需要一定的时间,相邻两次采样值之 间的变化有一定的限度。程序判断滤波就是根据实践经验确定出相邻两次采样信 号之间可能出现的最大偏差 Δ Y,若超出此偏差值,则表明该输入信号是干扰信 号,应该去掉;若小于此偏差值,可将信号作为本次采样值。 当采样信号由于随机干扰,如大功率用电设备的启动或停止,造成电流的 尖峰干扰或误检测,以及变送器不稳定而引起的严重失真等,可采用程序判断法 进行滤波。 程序判断滤波根据滤波方法的不同,可分为限幅滤波和限速滤波 2 种。 2.6.1 限幅滤波 限幅滤波把两次相邻的采样值相减,求出其增量(以绝对值表示),然后与 两次采样允许的最大差值(由被控对象的实际情况决定)Δ Y 进行比较,若小于或 等于 Δ Y,则取本次采样值;若大于 Δ Y,则仍取上次采样值作为本次采样值。 即: 限幅滤波主要用于变化比较缓慢的参数,如温度、物理位置等测量系统。具体应 用时,关键的问题是最大允差 Δ Y 的选取,Δ Y 太大,各种干扰信号将“乘虚而 入”,使系统误差增大;Δ Y 太小,又会使某些有用信号被“拒之门外”,使计 算机采样效率变低。因此,门限值 Δ Y 的选取是非常重要的。通常可根据经验 数据获得,必要时也可由实验得出。 2.6.2 限速滤波 限速滤波最多可用 3 次采样值来决定采样结果,设顺序采样时刻 t1,t2, t3 的采样值分别为 Y(1),Y(2),Y(3),则 限速滤波较为折中,既照顾了采样的实时性,又顾及了采样值变化的连续性。 但这种方法也有明显的缺点: (1)△Y 的确定不够灵活,必须根据现场的情况不断更换新值; (2)不能反映采样点数 N>3 时各采样值受干扰的情况,因而其应用受到一定 的限制。具体应用时,可用(Y(1)-Y(2)+Y(2)-Y(3))/2 作为 Δ Y,这样也可基本 保持限速滤波的特性,虽增加计算量,但灵活性提高了。 2.7 低通滤波 将普通硬件 RC 低通滤波器的微分方程用差分方程来表示,便可以用软件 算法来模拟硬件滤波的功能。经推导,低通滤波算法如下: 其中,X(K)为本次采样值;Y(K-1)为上次的滤波输出值;α 为滤波系数,其值 通常远小于 1;Y(K)为本次滤波的输出值。 由式(13)可以看出,本次滤波的输出值主要取决于上次滤波的输出值(注 意不是上次的采样值,这和加权平均滤波是有本质区别的),本次采样值对滤波 输出的影响是比较小的,但多少有些修正作用。 这种算法模拟了具有较大惯性的低通滤波功能,当目标参数为变化很慢的 物理量时,效果很好,但他不能滤除高于 1/2 采样频率的干扰信号。除低通滤 波外,同样可用软件来模拟高通滤波和带通滤波。 2.8 复合数字滤波 为了进一步提高滤波效果,有时可以把 2 种或 2 种以上不同滤波功能的 数字滤波器组合起来,组成复合数字滤波器,或称多级数字滤波器。 例如防脉冲干扰平均值滤波就是一种应用实例,由于这种滤波方法兼顾了 中值滤波和算术平均值滤波的优点,所以无论对缓慢变化的信号,还是对快速变 化的信号,都能获得较好的滤波效果。 此外,也可采用双重滤波的方法,即把采样值经过低通滤波后,再经过一 次高通滤波。这样,结果更接近理想值,这实际上相当于多级 RC 滤波器。 3 结语 本文讨论了 8 种数字滤波算法,每种滤波算法都有其各自的特点,在实际 应用中,究竟选取哪一种数字滤波算法,应根据具体的测量参数合理的选用。不 适当地应用数字滤波,不仅达不到滤波效果,反而会降低控制品质,甚至失控, 这点必须予以注意。

网友评论

我的2016年度评论盘点
还没有评论,快来抢沙发吧!